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The myotubularins are a large family of inositol polyphosphate
3-phosphatases that, despite having common substrates, subsume
unique functions in cells that are disparate. The myotubularin
family consists of 16 different proteins, 9 members of which
possess catalytic activity, dephosphorylating phosphatidylinositol
3-phosphate [PtdIns(3)P] and phosphatidylinositol 3,5-bisphos-
phate [PtdIns(3,5)P2] at the D-3 position. Seven members are in-
active because they lack the conserved cysteine residue in the
CX5R motif required for activity. We studied a subfamily of homol-
ogous myotubularins, including myotubularin-related protein 6
(MTMR6), MTMR7, and MTMR8, all of which dimerize with the
catalytically inactive MTMR9. Complex formation between the ac-
tive myotubularins and MTMR9 increases their catalytic activity
and alters their substrate specificity, wherein the MTMR6/R9 com-
plex prefers PtdIns(3,5)P2 as substrate; the MTMR8/R9 complex
prefers PtdIns(3)P. MTMR9 increased the enzymatic activity of
MTMR6 toward PtdIns(3,5)P2 by over 30-fold, and enhanced the
activity toward PtdIns(3)P by only 2-fold. In contrast, MTMR9 in-
creased the activity of MTMR8 by 1.4-fold and 4-fold toward PtdIns
(3,5)P2 and PtdIns(3)P, respectively. In cells, the MTMR6/R9 com-
plex significantly increases the cellular levels of PtdIns(5)P, the
product of PI(3,5)P2 dephosphorylation, whereas the MTMR8/R9
complex reduces cellular PtdIns(3)P levels. Consequentially, the
MTMR6/R9 complex serves to inhibit stress-induced apoptosis
and the MTMR8/R9 complex inhibits autophagy.

Inositol lipids play important roles in a variety of intracellular
signaling pathways. In response to stimuli, the phosphoinosi-

tide profile is regulated by phospholipases, lipid kinases, and
phosphatases. Understanding the roles of inositol signaling has
expanded during the last decade and a number of these enzymes
have been shown to cause diseases when mutated (1). The tu-
mor-suppressor PTEN was discovered through positional cloning
as being mutated in several types of cancer (2, 3). PTEN was
subsequently shown to be a phosphatase, which dephosphor-
ylates phosphatidylinositol 3,4,5-trisphosphate to generate phos-
phatidylinositol 4,5-bisphosphate, an activity that is lost in
patients with PTEN mutations (4, 5). Mutations in the inositol
polyphosphate 5-phosphatase OCRL cause the X-linked disor-
der Lowe syndrome, which is associated with mental retardation,
blindness, and renal failure (6). Mutations in myotubularin cause
myotubular myopathy (7), and mutations in myotubularin-re-
lated protein 2 (MTMR2) and MTMR13 cause a form of
Charcot Marie Tooth disease type 4B, a demyelinating neuro-
degenerative disorder (8, 9).
The myotubularin family consists of 16 different proteins, 9

members of which possess catalytic activity (10, 11) and 7 mem-
bers that are inactive. Myotubularin proteins are not redundant
and have unique functions within cells by regulating a specific
pool of dephosphorylating phosphatidylinositol 3-phosphate
[PtdIns(3)P] and phosphatidylinositol 3,5-bisphosphate [PtdIns
(3,5)P2] (12–15). Varying tissue expression and subcellular lo-
calization play a role in determining the unique function of

myotubularin proteins (16–21). One mechanism that regulates
the myotubularins is the formation of heterodimers between
catalytically active and inactive proteins. The interaction between
different myotubularin proteins has a significant effect on en-
zymatic activity. For example, the association of myotubularin
(MTM1) with MTMR12 results in a threefold increase in the 3-
phosphatase activity of MTM1, alters the subcellular localiza-
tion of MTM1 from the plasma membrane to the cytosol, and
attenuates the filopodia formation seen with MTM1 overex-
pression (21, 22). MTMR2 binds to MTMR5 via the coiled-coil
domains resulting in a three- to fourfold increase in 3-phospha-
tase activity and altered subcellular localization of MTMR2 (19).
MTMR2 also binds to MTMR13, resulting in a dramatic increase
in the catalytic activity of MTMR2 toward both PtdIns(3)P and
PtdIns(3,5)P2 (23). In these examples, the binding of a catalyti-
cally inactive protein to a catalytically active protein resulted in
changes in activity and localization; hence, inactive myotubularin
proteins may serve a regulatory role. Mutations in both active and
inactive myotubularins are associated with diseases (8, 9), such as
myotubular myopathy, Charcot-Marie-Tooth disease, and others,
indicating that inactive myotubularin proteins are functionally
important. Based on these results, the working hypothesis is that
the enzymatically active myotubularin proteins dimerize with
enzymatically inactive myotubularin proteins, and the formation
of these heteromers can result in altered enzymatic activity and
subcellular localization. Myotubularin proteins can be grouped
into subfamilies based on homology. Closely related MTMR6,
MTMR7, and MTMR8 comprise such a subfamily, and MTMR9
is the sole member of another subfamily. Previous studies have
shown that MTMR9 binds to MTMR6 (24) and to MTMR7 (25).
PtdIns(3)P has been proposed to be essential in autophagy,

a conserved intracellular process for the degradation of cyto-
plasmic proteins or organelles. A number of human diseases,
including cancer and neurodegenerative disorders, are linked to
dysfunctions in autophagy (26). Autophagy has been demon-
strated to eliminate aggregated proteins in neurons (27). Previous
studies have shown that aggregated proteins have pathological
significance with respect to neurodegeneration, as removal of
these proteins in mouse models of spinocerebellar ataxia 1 and
Huntington disease correlates with reversal of symptoms (28, 29).
Type III PI3K, which generates PtdIns(3)P in mammalian cells,

forms a complex with Beclin 1 and controls autophagosome for-
mation (30). Little is known what role the synthesis and degra-
dation of PtdIns(3)P plays in autophagy. It was proposed that
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when autophagy is suppressed under nutrient-rich conditions, the
activity of PtdIns(3)P phosphatases overrides that of type III PI3K
(31). Most recently, two members of the MTMR family, Jumpy
(MTMR14) and MTMR3, have been shown to be involved in the
regulation of autophagy (32, 33). Knockdown of Jumpy enhances
autophagy under both nutrient and starvation conditions, whereas
a dominant-negative MTMR3 only increases autophagic activity
in the presence of nutrients, suggesting that the roles of the two
MTMRs in autophagy are different. Down-regulation of both
MTMR3 and MTMR14 facilitates initiation as well as the com-
pletion of autophagy, indicating that the local PtdIns(3)P level is
important for the entire autophagic process. Here, we demon-
strate that inactiveMTMR9 interacts with activeMTMR8. Unlike
the MTMR6/R9 complex that regulates PtdIns (3, 5)P2 levels and
thereby affects apoptosis, the MTMR8/R9 complex down-regu-
lates the levels of PthIns(3)P and blocks the autophagic process.

Results
Human MTMR9 Binds to MTMR8 and Increases the Stability of MTMR8.
We previously demonstrated that human MTMR6 and MTMR9
directly associate both in vitro and in cells (24). Formation of the
MTMR6/R9 complex increased MTMR6’s affinity for phospholi-
pids, catalytic activity, and protein stability. Functionally, the com-
plex inhibited apoptosis (24). To investigate whether the human
orthologs of MTMR8 and MTMR9 interact, the human MTMR8
cDNA (GenBank, NM_017677) and human MTMR9 cDNA
(GenBank, NM_015458) were cloned, as previously described (24).
HA-MTMR8 and FLAG-MTMR9 were coexpressed in HeLa cells
and immunoprecipitated using anti-HA and anti-FLAG antibodies.
Both MTMR8 and MTMR9 were detected when either MTMR8
or MTMR9 was immunoprecipitated (Fig. 1A).
We next tested whether or not formation of the complex sta-

bilizes the proteins, possibly by decreasing the degradation rate.
The levels of MTMR8 were analyzed in cycloheximide-treated
HeLa cells in the presence or absence of MTMR9. Higher levels
of MTMR8 and slower degradation of MTMR8 are observed in
cells cotransfected with both proteins (Fig. 1B).

Catalytic Activity of MTMR6, MTMR6/R9, MTMR8, and MTMR8/R9. To
determine the effect of MTMR9 on the 3-phosphatase activity of
both MTMR6 and MTMR8, we determined the catalytic activity
for each using radio-labeled PtdIns(3*)P and PtdIns(3*,5)P2, by
measuring the release of [32P]-PO4. MTMR9 increased the en-
zymatic activity of MTMR6 toward PtdIns(3)P only about 2-fold,
whereas it enhanced the activity toward PtdIns(3,5)P2 by over
30-fold. By contrast, MTMR9 increased MTMR8 activity 4-fold
and 1.4-fold toward PtdIns(3)P and PtdIns(3,5)P2, respectively
(Fig. 2 A and B). The cellular level of the product PtdIns(5)P was
elevated threefold when both MTMR6 and MTMR9 were coex-
pressed but no significant increase in the level of PtdIns(5)P was

seen by overexpression of MTMR8 plus MTMR9 (Fig. 2C),
consistent with the changes in enzymatic activity observed in the
in vitro assays. MTMR8 exhibited relatively higher activity toward
PtdIns(3)P than MTMR6 or MTMR6 plus MTMR9 in vitro (Fig.
2A); however, no significant decrease was observed in the cellular
levels of PtdIns(3)P by overexpression of MTMR8, using an an-
tibody that specifically recognizes PtdIns(3)P. Transfection effi-
ciency was determined in a separate set of plates and found to be
greater than 95%. No significant change in PtdIns(3)P levels was
observed in cells overexpressing MTMR6 or MTMR6 plus
MTMR9 (Fig. 2D). These data are quantified in Fig. 2E, with 50
cells per cover-slip, and three cover-slips counted for each con-
dition. Spots larger than 1 nm were counted as one PI(3)P mol-
ecule. Only overexpression of MTMR8 plus MTMR9 altered the
cellular levels of PtdIns(3)P significantly, implying that the
MTMR6/R9 complex controls PtdIns(3,5)P2, but the MTMR8/
R9 complex determines PtdIns(3)P levels, thereby possibly af-
fecting different cellular functions. A moderate decrease was
observed in the level of PtdIns(3)P, with overexpression of
MTMR9 alone, suggesting that inactive MTMR9 altered these
levels through interactions with endogenous MTMR8.

Role of the MTMR8/R9 Complex in Autophagy. A number of studies
in Caenorhabditis elegans indicate that several myotubularins
have nonredundant roles in regulating PtdIns(3)P levels during
endocytosis (17, 34). It is likely that MTMR6 and MTMR8 have
distinct functions because of different substrate specificities and
specific subcellular localization. We have demonstrated that the
MTMR6/R9 complex protects cells from etoposide-induced ap-
optosis (24). However, the antiapoptosis effect was not seen with
overexpression of MTMR8 and MTMR9 (Fig. 2F). As our
in vitro studies suggested that the MTMR8/R9 complex controls
a cellular pool of PtdIns(3)P, we examined the cellular con-
sequences that result from both increasing and decreasing the
levels of MTMR8 and MTMR9 in cells.
PtdIns(3)P has been proposed to be essential in autophagy,

a conserved intracellular process for the degradation of cyto-
plasmic proteins or organelles. Overexpression of both MTMR8
and MTMR9 resulted in a significant increase in the level of p62,
a protein that is degraded in autophagosomes and is used to
monitor autophagy (35) (Fig. 3A). Knockdown of either
MTMR8 or MTMR9 alone had no effect on the level of p62 in
cells, whereas knockdown of both MTMR8 and MTMR9 sig-
nificantly reduced the level of p62 in HeLa cells, treated with
100 nM bafilomycin A1 for 3 h to inhibit fusion between auto-
phagosomes and lysosomes (Fig. 3B). The level of MTMR8
following RNAi of MTMR8 was 0.275, when the level of
MTMR8 was set at 1.0 in control siRNA, as determined using
RT-PCR. Very little effect was seen in the levels of p62 with
RNAi of MTMR6 alone or in combination with MTMR9
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(Fig. 3C). Thus, inactive MTMR9 regulates its individual binding
partners’ discrete functions. Up- or down-regulation of MTMR8
alone had no significant effect on autophagy, as measured by p62
levels, compared with controls (Fig. 3 A and B). Knocking down
MTMR9 alone led to a notable effect on autophagy compared
with control RNAi or vector (Fig. 3B), implying that there might
be other members of this MTMR subfamily involved in the
autophagy pathway that are also controlled by MTMR9: for
example, MTMR7. HeLa cells transfected with MTMR8 for
overexpression, followed by RNAi of MTMR8, show reduced
expression of MTMR8, compared with RNAi of vector alone
(Fig. 3D). The levels of MTMR8 protein were also further re-
duced using a combination of RNAi oligonucleotides targeting
both MTMR8 and MTMR9 (Fig. 3D, lanes 3 and 6). This finding
suggested that the formation of the MTMR8/R9 complex sta-
bilizes the proteins, as we have previously seen with the

MTMR6/R9 complex (24). Moreover, when HeLa cells
expressing HA-MTMR8 and endogenous MTMR9 were placed
in serum-free medium, the complex between these proteins was
completely dissociated by 2 h (Fig. 3E).
Another PtdIns(3)P binding autophagy factor, WIPI-1 (WD

repeat domain, phosphoinositide interacting 1), is recruited to
autophagic membranes in a PtdIns(3)P-dependent fashion (36).
The quantification of WIPI-1 protein accumulation can be used
to monitor mammalian autophagy (36). HeLa cells were trans-
fected with GFP-WIPI for 24 h, transfected with MTMR6,
MTMR8, MTMR6 plus MTMR9, or MTMR8 plus MTMR9
constructs for overexpression or RNAi constructs for knock-
downs. The percentage of cells displaying distinct WIPI-I puncta
was used to quantify the extent of autophagy. Knockdown of
MTMR8 plus MTMR9 significantly induced autophagy, which is
not seen in cells treated with RNAis of MTMR6, MTMR8,
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Fig. 2. Enzymatic activity of MTMR6, MTMR6/R9, MTMR8, and MTMR8/R9 toward PtdIns(3)P (A) or PtdIns(3,5)P2 (B). (C) Measurement of cellular PtdIns(5)P
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plus MTMR9 reduces levels of PtdIns(3)P in COS-7 cells. Cells were stained with anti-PI(3)P antibodies followed by anti-mouse Alexa568-conjugated antibodies.
Nuclei are visualized with DAPI. Cotransfection efficiency was determined in a separate set of plates, because of limited available fluorescence channels, and
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MTMR9, or the MTMR6/R9 complex (Fig. 4 A and B). Strik-
ingly, overexpression of MTMR8 plus R9 abolished rapamycine-
induced autophagy (Fig. 4 C and D).

Discussion
We describe here two members of a closely related subfamily of
active myotubularins, MTMR6 and MTMR8, both of which
partner with the same inactive myotubularin MTMR9. Previous
studies have shown an association between MTMR6 and
MTMR9 in mouse and C. elegans (24, 34). Complex formation
between MTMR6 and MTMR9 increases MTMR6’s affinity for
phospholipids, catalytic activity, protein stability, and complex
formation inhibits apoptosis (24). We demonstrated that the
association of MTMR9 with MTMR6 not only enhances the
enzymatic activity of MTMR6, but also determined its substrate
preference and thus the levels of its product. We have found that
the MTMR6/R9 complex controls PtdIns(3,5)P2 levels and the
MTMR8/R9 complex determines PtdIns(3)P levels, thereby af-
fecting different cellular functions. We have shown that the
MTMR8/R9 complex functions to reduce autophagy and the
MTMR6/R9 complex inhibits apoptosis.
Endocytic membrane trafficking is critically dependent on the

local synthesis of PtdInd(3)P and PtdIns(3,5)P2 (37). PtdIns(3)P is
generated on both early endosomes and late endosomes by the class
III PI3K complex (38). Early endosome antigen 1, a protein es-
sential for endosome fusion, binds to Rab5-GTP and PtdIns(3)P
through the FYVE domain on the PIKfyve kinase. PtdIns(3)P is
subsequently converted into PtdIns(3,5)P2 by PIKfyve on multi-
vesicular late endosomes, which is required for protein sorting as
well as controlling lysosome size (39). Although the mechanisms
involved in the synthesis of phosphoinositides at endosomes are

well understood, little is known about the lipid phosphatases that
degrade endosomal PtdIns(3)P and PtdIns(3,5)P2. It is likely that
myotubularin proteins, which dephosphorylate PtdIns(3)P and
PtdIns(3,5)P2 at the D3 position, are involved in membrane
trafficking. Overexpression of MTM1 leads to enlarged endo-
somal structures and delayed movement of the epidermal growth
factor receptor into the lysosome, similar to the observation made
when PtdIns(3)P or PtdIns(3,5)P2 is depleted by mutations in
PI3K or PIKfyve (40, 41). A recent study with RNAi depletion of
MTM1 also led to accumulation of the epidermal growth factor
receptor in distinct endosomes, despite the increased level of
PtdIns(3)P on early endosomes (42). Thus, impairment of optimal
phosphoinositide levels in endosomes may contribute to the dis-
ease phenotype when MTM1 is mutated. We plan to investigate
the role of theMTMR6/R9 and theMTMR8/R9 complexes in the
endocytosis process, because each complex controls a distinct
phosphatidylinositol pool and therefore may regulate different
signaling pathways.
MTMR9 seems to play a central role in the regulation of all

three active members of this subfamily. Although to date no dis-
ease has been associated with mutations in this subfamily, new
mutations are being uncovered all the time and the detailed study
of this subfamily will lead to a better understanding of the bio-
chemical events underlying human diseases caused by mutations in
these proteins. MTMR9 expression has been correlated with
obesity in humans, as determined from a large number of gene-
based single-nucleotide polymorphisms (43). A replicated associ-
ation between obesity and a single-nucleotide polymorphism lo-
cated in the MTMR9 gene was demonstrated in a study comprised
of 1,011 obese and 2,171 control individuals, P= 10−7 (43). In this
same report, transcription of MTMR9 in the rat hypothalamic
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region was induced by fasting and reduced by a high-fat diet. Be-
cause MTMR9 lacks phosphatase activity, it is likely that it inter-
acts with one of the active phosphatases to cause the obesity
phenotype. To define the regulatory role of MTMR9 in vivo, an
MTMR9 knockout mousemodel is currently being generated (44).

Materials and Methods
All experiments were performed at least three times.

Reagents and Chemicals. All chemicals and reagents, unless specifically noted,
were purchased from Sigma–Aldrich. [γ-32P]-ATP was purchased from
MP Biomedicals.

Cloning, Expression, and Purification of Human MTMR6 and MTMR9. Full-length
humanMTMR9was cloned as described previously (24). Constructs for human
MTMR6, MTMR8, and MTMR9 were expressed in Sf9 cells and protein was
purified, as described previously (24). Briefly, Sf9 cells were transfected with
the appropriate construct, and the recombinant flag-tagged proteins were
purified using FLAG M1 agarose affinity gel (Sigma-Aldrich) according to the
manufacturer’s instructions.

Cell Culture, Transfection, Immunoprecipitation, and Western Blotting. HeLa
cells were maintained in culture using 10% (vol/vol) FBS in DMEM. Unless
noted, transfection was conducted by using Lipofectamine 2000 (Invitrogen).
RNAi transfections were done using a Nucleofector kit (Amaxa). RNAi
duplexes (Ambion) used in transfections are as follows: control RNAi (lucif-
erase) duplex, sense 5′-CUUACGCUGAGUACUUCGAdTdT-3′; antisense, 5′-
UCGAAGUACUCAGCGUAAGDTdT-3′; MTMR6 RNAi (R6-1), sense, 5′-GGA-
AGTCAATGGCACTAATgg-3′; antisense, 5′-TTTAGTGCCATTGACTTCCaa-3′;
MTMR8 RNAi (Invitrogen; Stealth RNAi, catalog # HSS124669); MTMR9 RNAi,
5′-CAAAGGAGGTGGCTTTGA Tca-3′ and 5′-TCAAAGCCACCTCCTTTGgc-3′. The
specificity and efficacy were determined using quantitative reverse

transcription-PCR, with 70%, 70%, and 50% reduction upon the RNAi of
MTMR6, MTMR8, and MTMR9, respectively. No cross-reactivity was detected.
Immunoprecipitation and Western blotting were done as previously de-
scribed (45).

Measurement of PtdIns(5)P Mass, 3-Phosphatase Activity, and Protein Stability.
The PtdIns(5)P mass assay was conducted as previously described (45) with
minor modifications. HeLa cells were transfected with control vector,
MTMR6/R9, and MTMR8/R9 constructs. Total cellular phosphatidylinositol
content was purified using a PIP mass purification kit (Echelon Bioscience).
For measurement of 3-phosphatase activity, 100 ng of purified, recombinant
MTMR protein was added to a reaction mixture containing trace amounts of
[32P]PtdIns(3)P and [32P]PtdIns(3,5)P2, prepared as described previously (24).
Substrate identity and purity were determined by HPLC analysis. Activity
is expressed as a rate constant using the equation [S] = [So]e

−kt. Units are
min−1, and are graphed as min−1/mg protein. Because of the trace amount
of label incorporated into the substrate, a defined specific activity cannot be
determined. Protein stability was measured as previously described (24).

Immunofluorescence Microscopy. Twenty-four hours after transfection, HeLa
cells grown on cover-slips were fixed as described previously (45), washed with
Tris-buffered saline, and solubilized with 0.5% Triton X-100 in PBS. Antibodies
were diluted in PBS, containing 0.1% Triton X-100 and 5% BSA. Cells were in-
cubated for 1 hwithprimaryantibody and for 30minwith secondary antibodies
at 37 °C. Cover-slips were washed in PBS, and mounted in Prolong mounting
medium (Molecular Probes). Images were takenwith anOlympus IX70 inverted
microscope and processed with Metamorph software (Molecular Devices).
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Fig. 4. Knockdown of the MTMR8/R9 complex induces autophagy. (A) HeLa cells were transfected with GFP-WIPI-1 for 24 h, then treated with indicated RNAi
constructs for 24 h. Autophagy was assessed by measuring WIPI-1 puncta-formation by immunofluorescence. (Magnification: 63×.) (B) Results from a total of
500 cells were counted and the ratios of cells in puncta/nonpuncta status was determined. (*P < 0.01.) (C) Overexpression of the MTMR8/R9 complex sup-
presses autophagy. HeLa cells were transfected with GFP-WIPI-1 for 24 h, then transfected with the indicated constructs for an additional 24 h. Autophagy
was induced by rapamycine for 3 h and then was measured by immunofluorescence. (Magnification: 63×.) (D) The ratios of cells in puncta/nonpuncta status
was measured. Cotransfection efficiency was determined to be greater than 95% using a duplicate set of plates. (E) The hypothesized consequential effects of
complex formation between MTMR9 and either MTMR8 or MTMR6 are shown in a schematic diagram.
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